1 DeepSeek R1 Model now Available in Amazon Bedrock Marketplace And Amazon SageMaker JumpStart
Albertha Blesing edited this page 4 days ago


Today, we are delighted to announce that DeepSeek R1 distilled Llama and Qwen designs are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now release DeepSeek AI's first-generation frontier model, DeepSeek-R1, along with the distilled versions varying from 1.5 to 70 billion specifications to construct, experiment, and responsibly scale your generative AI ideas on AWS.

In this post, we demonstrate how to get going with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow similar actions to deploy the distilled variations of the models also.

Overview of DeepSeek-R1

DeepSeek-R1 is a big language model (LLM) developed by DeepSeek AI that uses reinforcement discovering to improve thinking abilities through a multi-stage training procedure from a DeepSeek-V3-Base structure. An essential differentiating function is its support knowing (RL) step, which was utilized to improve the model's actions beyond the standard pre-training and tweak procedure. By including RL, DeepSeek-R1 can adapt better to user feedback and goals, ultimately boosting both significance and clearness. In addition, DeepSeek-R1 employs a chain-of-thought (CoT) method, implying it's geared up to break down intricate queries and factor through them in a detailed manner. This directed thinking procedure permits the design to produce more precise, transparent, and detailed responses. This design integrates RL-based fine-tuning with CoT abilities, aiming to produce structured actions while focusing on interpretability and user interaction. With its comprehensive abilities DeepSeek-R1 has recorded the industry's attention as a versatile text-generation design that can be integrated into numerous workflows such as representatives, logical thinking and information interpretation jobs.

DeepSeek-R1 utilizes a Mixture of Experts (MoE) architecture and is 671 billion parameters in size. The MoE architecture enables activation of 37 billion criteria, allowing effective inference by routing inquiries to the most appropriate expert "clusters." This technique enables the design to focus on different issue domains while maintaining general efficiency. DeepSeek-R1 requires at least 800 GB of HBM memory in FP8 format for reasoning. In this post, we will use an ml.p5e.48 xlarge instance to release the design. ml.p5e.48 xlarge features 8 Nvidia H200 GPUs offering 1128 GB of GPU memory.

DeepSeek-R1 distilled models bring the reasoning capabilities of the main R1 model to more efficient architectures based on popular open models like Qwen (1.5 B, 7B, 14B, and 32B) and Llama (8B and 70B). Distillation refers to a procedure of training smaller sized, more effective models to simulate the habits and reasoning patterns of the larger DeepSeek-R1 design, utilizing it as a teacher design.

You can release DeepSeek-R1 model either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging model, we recommend releasing this design with guardrails in location. In this blog, we will use Amazon Bedrock Guardrails to introduce safeguards, avoid hazardous content, and examine designs against key safety criteria. At the time of composing this blog site, for DeepSeek-R1 releases on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports just the ApplyGuardrail API. You can produce several guardrails tailored to various use cases and apply them to the DeepSeek-R1 design, improving user experiences and standardizing safety controls across your generative AI applications.

Prerequisites

To deploy the DeepSeek-R1 model, you require access to an ml.p5e instance. To examine if you have quotas for P5e, open the Service Quotas console and under AWS Services, pick Amazon SageMaker, and verify you're utilizing ml.p5e.48 xlarge for endpoint use. Make certain that you have at least one ml.P5e.48 xlarge circumstances in the AWS Region you are releasing. To request a limitation boost, develop a limit increase demand and connect to your account group.

Because you will be deploying this design with Amazon Bedrock Guardrails, make certain you have the proper AWS Identity and Gain Access To Management (IAM) approvals to use Amazon Bedrock Guardrails. For directions, see Set up authorizations to utilize guardrails for content filtering.

Implementing guardrails with the ApplyGuardrail API

Amazon Bedrock Guardrails allows you to introduce safeguards, avoid damaging material, and examine models against key security requirements. You can carry out safety procedures for the DeepSeek-R1 design utilizing the Amazon Bedrock ApplyGuardrail API. This enables you to apply guardrails to evaluate user inputs and model responses released on Amazon Bedrock Marketplace and SageMaker JumpStart. You can create a guardrail using the Amazon Bedrock console or the API. For the example code to develop the guardrail, see the GitHub repo.

The general flow involves the following actions: First, the system receives an input for the design. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, it's sent out to the model for inference. After getting the model's output, another guardrail check is applied. If the output passes this last check, it's returned as the result. However, if either the input or output is stepped in by the guardrail, a message is returned indicating the nature of the intervention and whether it took place at the input or output phase. The examples showcased in the following areas demonstrate reasoning utilizing this API.

Deploy DeepSeek-R1 in Amazon Bedrock Marketplace

Amazon Bedrock Marketplace provides you access to over 100 popular, emerging, and specialized structure designs (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, total the following actions:

1. On the Amazon Bedrock console, choose Model catalog under Foundation designs in the navigation pane. At the time of composing this post, you can use the InvokeModel API to conjure up the design. It does not support Converse APIs and other Amazon Bedrock tooling. 2. Filter for DeepSeek as a provider and pick the DeepSeek-R1 design.

The design detail page supplies vital details about the model's abilities, pricing structure, and implementation standards. You can find detailed usage directions, consisting of sample API calls and code bits for integration. The model supports numerous text generation tasks, including material production, code generation, and question answering, using its support learning optimization and CoT reasoning abilities. The page also consists of implementation alternatives and licensing details to help you start with DeepSeek-R1 in your applications. 3. To start using DeepSeek-R1, pick Deploy.

You will be triggered to set up the implementation details for DeepSeek-R1. The model ID will be pre-populated. 4. For Endpoint name, enter an endpoint name (between 1-50 alphanumeric characters). 5. For Number of circumstances, enter a variety of instances (in between 1-100). 6. For example type, select your instance type. For optimal performance with DeepSeek-R1, a GPU-based circumstances type like ml.p5e.48 xlarge is suggested. Optionally, you can configure innovative security and facilities settings, including virtual personal cloud (VPC) networking, service role authorizations, and encryption settings. For a lot of utilize cases, the default settings will work well. However, for production deployments, you may desire to evaluate these settings to align with your company's security and compliance requirements. 7. Choose Deploy to start utilizing the model.

When the release is total, you can evaluate DeepSeek-R1's abilities straight in the Amazon Bedrock play ground. 8. Choose Open in play ground to access an interactive user interface where you can explore different prompts and adjust design parameters like temperature and optimum length. When using R1 with Bedrock's InvokeModel and Playground Console, use DeepSeek's chat design template for optimal outcomes. For instance, material for inference.

This is an exceptional way to check out the model's thinking and text generation abilities before incorporating it into your applications. The playground offers immediate feedback, helping you comprehend how the design reacts to different inputs and letting you fine-tune your triggers for optimal results.

You can rapidly test the model in the playground through the UI. However, to conjure up the deployed model programmatically with any Amazon Bedrock APIs, you need to get the endpoint ARN.

Run reasoning utilizing guardrails with the deployed DeepSeek-R1 endpoint

The following code example shows how to carry out inference utilizing a released DeepSeek-R1 design through Amazon Bedrock using the invoke_model and ApplyGuardrail API. You can produce a guardrail using the Amazon Bedrock console or the API. For the example code to produce the guardrail, see the GitHub repo. After you have actually created the guardrail, use the following code to implement guardrails. The script initializes the bedrock_runtime client, configures inference specifications, and sends out a demand to create text based upon a user timely.

Deploy DeepSeek-R1 with SageMaker JumpStart

SageMaker JumpStart is an artificial intelligence (ML) center with FMs, built-in algorithms, and prebuilt ML solutions that you can release with just a few clicks. With SageMaker JumpStart, you can tailor pre-trained models to your usage case, with your data, and release them into production utilizing either the UI or SDK.

Deploying DeepSeek-R1 model through SageMaker JumpStart uses two hassle-free approaches: using the intuitive SageMaker JumpStart UI or implementing programmatically through the SageMaker Python SDK. Let's check out both techniques to assist you choose the method that best matches your needs.

Deploy DeepSeek-R1 through SageMaker JumpStart UI

Complete the following steps to deploy DeepSeek-R1 using SageMaker JumpStart:

1. On the SageMaker console, select Studio in the navigation pane. 2. First-time users will be prompted to create a domain. 3. On the SageMaker Studio console, pick JumpStart in the navigation pane.

The model browser displays available designs, with details like the service provider name and model abilities.

4. Search for DeepSeek-R1 to view the DeepSeek-R1 model card. Each model card shows crucial details, including:

- Model name

  • Provider name
  • Task classification (for instance, Text Generation). Bedrock Ready badge (if relevant), that this design can be signed up with Amazon Bedrock, enabling you to use Amazon Bedrock APIs to conjure up the design

    5. Choose the design card to see the model details page.

    The design details page consists of the following details:

    - The design name and company details. Deploy button to release the design. About and Notebooks tabs with detailed details

    The About tab includes important details, such as:

    - Model description.
  • License details.
  • Technical specs.
  • Usage standards

    Before you release the model, it's advised to evaluate the design details and license terms to validate compatibility with your use case.

    6. Choose Deploy to continue with deployment.

    7. For Endpoint name, use the immediately created name or develop a custom one.
  1. For example type ¸ choose a circumstances type (default: ml.p5e.48 xlarge).
  2. For Initial instance count, get in the number of circumstances (default: 1). Selecting appropriate circumstances types and counts is vital for expense and efficiency optimization. Monitor your release to change these settings as needed.Under Inference type, Real-time reasoning is selected by default. This is enhanced for sustained traffic and low latency.
  3. Review all setups for accuracy. For this design, we highly recommend sticking to SageMaker JumpStart default settings and making certain that network isolation remains in location.
  4. Choose Deploy to deploy the design.

    The deployment procedure can take several minutes to complete.

    When implementation is total, your endpoint status will alter to InService. At this moment, the design is prepared to accept inference requests through the endpoint. You can monitor the deployment progress on the SageMaker console Endpoints page, disgaeawiki.info which will show appropriate metrics and status details. When the release is total, you can conjure up the model using a SageMaker runtime client and integrate it with your applications.

    Deploy DeepSeek-R1 using the SageMaker Python SDK

    To get going with DeepSeek-R1 utilizing the SageMaker Python SDK, you will require to set up the SageMaker Python SDK and make certain you have the required AWS consents and environment setup. The following is a detailed code example that demonstrates how to deploy and use DeepSeek-R1 for inference programmatically. The code for deploying the model is offered in the Github here. You can clone the notebook and run from SageMaker Studio.

    You can run extra demands against the predictor:

    Implement guardrails and run inference with your SageMaker JumpStart predictor

    Similar to Amazon Bedrock, you can also utilize the ApplyGuardrail API with your SageMaker JumpStart predictor. You can develop a guardrail using the Amazon Bedrock console or the API, and execute it as displayed in the following code:

    Clean up

    To prevent undesirable charges, finish the steps in this area to tidy up your resources.

    Delete the Amazon Bedrock Marketplace implementation

    If you released the model using Amazon Bedrock Marketplace, complete the following steps:

    1. On the Amazon Bedrock console, under Foundation designs in the navigation pane, choose Marketplace deployments.
  5. In the Managed deployments section, find the endpoint you wish to delete.
  6. Select the endpoint, and on the Actions menu, pick Delete.
  7. Verify the endpoint details to make certain you're erasing the right release: 1. Endpoint name.
  8. Model name.
  9. Endpoint status

    Delete the SageMaker JumpStart predictor

    The SageMaker JumpStart design you deployed will sustain costs if you leave it running. Use the following code to erase the endpoint if you wish to stop sustaining charges. For more details, see Delete Endpoints and Resources.

    Conclusion

    In this post, we checked out how you can access and deploy the DeepSeek-R1 design using Bedrock Marketplace and SageMaker JumpStart. Visit SageMaker JumpStart in SageMaker Studio or Amazon Bedrock Marketplace now to get going. For more details, describe Use Amazon Bedrock tooling with Amazon SageMaker JumpStart models, SageMaker JumpStart pretrained designs, Amazon SageMaker JumpStart Foundation Models, Amazon Bedrock Marketplace, and Getting going with Amazon SageMaker JumpStart.

    About the Authors

    Vivek Gangasani is a Lead Specialist Solutions Architect for Inference at AWS. He helps emerging generative AI business build ingenious options using AWS services and sped up compute. Currently, he is concentrated on developing strategies for fine-tuning and optimizing the reasoning performance of large language models. In his downtime, Vivek delights in hiking, viewing movies, and trying various cuisines.

    Niithiyn Vijeaswaran is a Generative AI Specialist Solutions Architect with the Third-Party Model Science group at AWS. His area of focus is AWS AI accelerators (AWS Neuron). He holds a Bachelor's degree in Computer technology and Bioinformatics.

    Jonathan Evans is an Expert Solutions Architect working on generative AI with the Third-Party Model Science group at AWS.

    Banu Nagasundaram leads item, engineering, and strategic partnerships for Amazon SageMaker JumpStart, SageMaker's artificial intelligence and generative AI hub. She is enthusiastic about building services that assist consumers accelerate their AI journey and unlock organization worth.